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Atiyah and Singer were able to extend many of their results on elliptic op-
erators on compact G-manifolds to a larger class known as the transversally
elliptic operators. These are operators which are elliptic in directions per-
pendicular to the orbits of the group action. In particular, they were able to
define the index of such an operator as a distribution on the group G, and
show that many of the properties of the index for elliptic operators carried
over with only slight modification. The majority of this essay will focus on
properties of these operators and their indices (sketching proofs of only a se-
lection of them), following closely Atiyah’s 1971 lecture notes [2]. We’ll then
briefly describe two more recent developments: (1) a general cohomological
formula for the index developed by Berline and Vergne [3], (2) an application
by Paradan of the theory to give a new proof of the “quantization commutes
with reduction” theorem [4].

1 Definition of the analytic index

Throughout, G will denote a compact Lie group with Lie algebra g, acting
on a compact manifold X. We identify TX and T ∗X using a G-invariant
Riemannian metric on X. For each point p ∈ X the action gives a map
g→ TpX whose image we denote gX(p). Let π : T ∗X → X be the projection
(we’ll also sometimes use πTX).

Definition 1. Let

T ∗GX =
⋃
p∈X

{α ∈ T ∗pX : α(gX(p)) = 0}.

We call aG-invariant pseudo-differential operator P : D(E)→ E(F ) transver-
sally elliptic if its symbol σ(P ) ∈ Hom(π∗E, π∗F ) is invertible on T ∗GX − 0.
Here 0 ' X is the zero section of T ∗X. Note that since σ(P ∗) = σ(P )∗, P ∗

is also transversally elliptic.

We would like to define the index of such an operator as

ind(P ) = χker(P ) − χker(P ∗), (1)
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where χV is meant to denote the character of the representation V . But this
expression requires further explanation because transversally elliptic opera-
tors need not be Fredholm (when extended to bounded operators between
appropriate Sobolev spaces). For example, if X = G with the left action,
then T ∗GG = 0, and so the zero operator E → F is transversally elliptic but
never Fredholm. Also G need not act by trace-class operators (for example
the identity e ∈ G). But it is possible that smearing the group elements with
a smooth function will yield a trace-class operator, or equivalently that the
representation of the smooth group algebra will be trace-class. Let (ρ, V )
denote a (possibly infinite-dimensional) representation of G. For φ ∈ D(G)
define

ρ(φ) =

∫
G

φ(g)ρ(g)dg.

The composition
φ ∈ D(G) 7→ Tr(ρ(φ))

would then define a distribution on G which we denote χV ∈ D′(G). This
gives meaning to (1) provided we can show that for P transversally elliptic,
the representations ker(P ) and ker(P ∗) of D(G) are trace-class.

Theorem 1. Let P : D(E) → E(F ) be a G-invariant transversally elliptic
operator on X, and let ρ denote the representation of G on ker(P ). Then
the composition

φ ∈ D(G) 7→ Tr(ρ(φ))

defines a distribution on G.

Proof. The G-action gives the extra structure needed to make up for the fact
that P is not elliptic. The basic idea is to build an elliptic operator out of
P together with the G action, to which we apply the powerful theorems on
elliptic operators to get facts about P . Use a hermitian metric and compati-
ble connection on F to define a Laplace operator on sections of F (“Bochner
Laplacian”) which has spectrum contained in [0,∞). If we add the identity
operator we get an operator L acting on sections of F with spectrum con-
tained in [1,∞). Using the functional calculus we have Ls for any s ∈ R,
which has order 2s and trivial kernel. One way to think of L is as a bounded
operator between appropriate Sobolev spaces, and in fact we could compose
with the explicit isomorphism between two Sobolev spaces discussed in class
to get a bounded operator on a single Sobolev space. Choosing an appro-
priate s, LsP will have order 2 and the same kernel as P . This means that
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without loss of generality we can restrict to the case where P is second-order
(recall that the order is well-defined also for pseudo-differential operators, it
referring to the exponent in the estimates that the total symbol satisfies).

Let Y1, ..., Yn denote an orthonormal basis for g, and use the same notation
for the corresponding left-invariant vector fields on G. Let Ỹ1, ..., Ỹn denote
the corresponding first-order differential operators (Lie derivatives) on E.
Let

∆E = 1−
∑
i

Ỹ 2
i .

The −Ỹ 2
i are positive operators, and so ∆E will have spectrum contained in

[1,∞). It is constructed precisely so that its symbol is injective along the
G-orbit directions.

Now define
A = (P,∆E) : D(E)→ D(F )⊕D(E).

We have
σ(A) = (σ(P ), σ(∆E)).

which gives an injective homomorphism σ(A)(ξ) ∈ Hom(E,F ⊕ E) for each
ξ ∈ T ∗X − 0 since σ(P )(ξ) is injective for ξ ∈ T ∗GX − 0 while σ(∆E)(ξ) is
injective for ξ pointing along an orbit direction (we’re using a G-invariant
Riemannian metric to identify TX and T ∗X). It follows that σ(A)∗σ(A) is
an isomorphism on T ∗X − 0, showing that A∗A is elliptic.

This allows us to define subspaces (eigenspaces) of D(E)

ker(P )λ = {u ∈ D(E) : Pu = 0,∆Eu = λu}

(A∗A)λ = {u ∈ D(E) : A∗Au = λ2u}.

Since A∗A is elliptic, (A∗A)λ is finite dimensional for all λ, and consists of
C∞-sections. Since ker(P )λ ⊂ (A∗A)λ, we have that the ker(P )λ are finite
dimensional and consist of C∞-sections. Let

bλ := dim((A∗A)λ) ≥ aλ := dim(ker(P )λ).

Since A∗A has spectrum contained in [1,∞) we can form (A∗A)−s for any
s > 0. Because A∗A has order 4, (A∗A)−s has order −4s. Now fix s such that
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4s > dim(X). Then (A∗A)−s maps delta distributions to continuous sections
by Sobolev embedding. This means that (A∗A)−s must have a continuous
Schwartz kernel, Ks(x, y). In particular

Tr(A∗A)−s =

∫
X

Tr(Ks(x, x))dx <∞

On the other hand
Tr(A∗A)−s =

∑
λ

bλλ
−2s,

(in our notation the eigenvalues of A∗A are the λ2) which shows that the sum
converges (absolutely). Let fλ denote the character of the finite dimensional
representation ker(P )λ. Since G is compact, we can assume the representa-
tion is unitary, so that for each g ∈ G, fλ(g) is the trace of a unitary matrix.
Since a unitary matrix has all its eigenvalues on the unit circle, its trace is
less than dim(ker(P )λ) = aλ ≤ bλ. Consequently the absolute convergence
of the series above implies that

h :=
∑
λ

fλλ
−2s

converges in sup-norm, showing that h is a continuous function on G.

Let ρλ denote the representation of G on ker(P )λ, so fλ = Tr ◦ ρλ. Let ej
denote an orthonormal basis for ker(P )λ. We have

Ykfλ(g) =
d

dt

∣∣∣∣
0

fλ(g · exp(tYk))

=
∑
j

d

dt

∣∣∣∣
0

〈ej, g exp(tYk)ej〉

=
∑
j

〈ej, g(Ỹkej)〉.

Consequently with ∆ := 1−
∑

i Y
2
i (an operator of order two on G) we have

∆fλ(g) =
∑
j

〈ej, g∆Eej〉

=
∑
j

〈ej, λgej〉 = λfλ(g).
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This gives that

H−4s(G) 3 ∆2sh =
∑
λ

∆2s fλ
λ2s

=
∑
λ

λ2s
fλ
λ2s

=
∑
λ

fλ = χker(P ),

where the equalities are of distributions (which makes commuting ∆2s past
the infinite sum automatic; alternatively think of ∆2s as a continuous linear
mapping between Sobolev spaces). This shows that χker(P ) defines a distri-
bution in H−t(G) when t > dim(X).

Since P commutes with the G-action, it intertwines ∆E with ∆F , and so
in particular it intertwines the λ-eigenspaces D(E)λ ⊂ D(E) and D(F )λ ⊂
D(F ). Consequently by restriction we get linear maps

Pλ : D(E)λ → D(F )λ.

We can use a trick similar to the one used in the proof to get a parametrix
for Pλ. The symbol of the operator

(P,∆E − λ) : D(E)→ D(F )⊕D(E)

is injective for each ξ ∈ T ∗X − 0. It thus has a left parametrix T , that is,
T ◦ (P,∆E − λ)− 1 has a C∞ Schwarz kernel, and in particular is compact.
The restriction to D(F )λ, denoted Tλ, is a left parametrix for Pλ. Similarly
P ∗λ has a left parametrix Sλ. Since SλP

∗
λ − 1 has C∞ Schwarz kernel, taking

adjoints shows that PλS
∗
λ− 1 has a C∞ Schwarz kernel, or in other words S∗λ

is a right parametrix for Pλ.

Let
Hs(E)λ = ker((∆E − λ) : Hs(E)→ Hs−2(E)).

Now extend Pλ as a map

Pλ : Hs(E)λ → Hs−m(F )λ

(it intertwines ∆E and ∆F because it commutes with the G-action). The
existence of the parametrices implies that, when projected down to the Calkin
algebra, Pλ is invertible (in the Calkin algebra, the parametrices become a
left and a right inverse, which must therefore coincide). Consequently Pλ is
Fredholm for each λ. Its index is

ind(Pλ) = χker(Pλ) − χker(P ∗λ )
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Taking a homotopy of P through transversally elliptic operators leads to a
homotopy of the operators Pλ. In particular ind(Pλ) does not change. Since

ind(P ) =
∑
λ

ind(Pλ)

(as an equality of distributions on G), we have that ind(P ) depends only on
the homotopy class of the symbol σ(P ) in the space of transversally elliptic
symbols. Since the K-group KG(T ∗GX) may be defined in terms of homotopy
classes of transversally elliptic symbols, this shows that we obtain a well-
defined map

ind : KG(T ∗GX)→ D′(G),

the analytic index map.

To summarize in different words, a transversally elliptic operator P gives
rise to a collection of Fredholm operators Pλ, with Pλ defined on the (usually
infinite dimensional) λ-eigenspace of the operator ∆E. The kernel of Pλ is
finite dimensional and does not depend on which Sobolev exponent s one
takes to define the eigenspaces of ∆E (its kernel consists of smooth sections).
Consequently ind(Pλ) is a smooth function on G independent of s, and by the
theorem ind(P ) = Σλind(Pλ) is a well-defined distribution on G independent
of s. Note however that ker(P ) is dependent on s in general. This is because
it is the closure in Hs of Σλker(Pλ), which will be different for different s
(since the topologies on Hs differ for different s).

2 Properties of the analytic index

We’ll discuss a number of general properties of the index which are proved
by Atiyah in lectures 3 and 4.

2.1 The multiplicative property

If H acts freely on X then we have an isomorphism

KH(X) = K(X/H).

Applying this in the case of a G×H-manifold X, on which H acts freely, we
have

KG×H(T ∗G×HX) = KG((T ∗G×HX)/H) = KG(T ∗G(X/H)), (2)
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where in the second equality we use the natural identification of H-basic
covectors on X with covectors on X/H. The isomorphism is induced by
pullback by the map π : X → X/H. We would like to relate the index maps
for the two sides of (2). Note that the index map indG×H yields a distribution
on G×H, whereas indG yields a distribution on G. Let Vα for α ∈ Ĥ where
Ĥ denotes the set of irreducible representations of H (indexed by dominant
weights), and let χα denote the corresponding character. For each Vα we get
a vector bundle V α := X ×H Vα. Atiyah proves the following result:

Theorem 2. Let a ∈ KG(T ∗G(X/H)), then

indG×H(π∗a) =
∑
α∈Ĥ

indG(a⊗W ∗
α) · χα.

Here we use the same notation for the vector bundle W ∗
α and its pullback

to T ∗G(X/H). The equality is of distributions on G × H. In particular this
shows that the H-invariant part of indG×H(π∗a) is indG(a).

We recall the definition of the symbol class [E,F, σ] ∈ K(T ∗GX) (special-
izing to our situation). Let E, F be vector bundles over X and let σ ∈
Hom(π∗E, π∗F ) be an isomorphism on T ∗GX − 0. Choose a vector bundle
F ′ such that F ⊕ F ′ = X × Cn. We use the map σ ⊕ 1 to glue the bundle
π∗E ⊕ π∗F ′ restricted to T ∗GX ⊂ (T ∗GX)+ to the trivial bundle of rank n
defined in a neighbourhood of the point at infinity in (T ∗GX)+. This yields a
vector bundle W . Then [E,F, σ] := [W ]− n, where n := [(T ∗GX)+ × Cn].

Addition of symbol classes is straightforward. We have

[E0, E1, σ] + [F0, F1, τ ] = [E0 ⊕ F0, E1 ⊕ F1, σ ⊕ τ ].

Products are slightly trickier. Introducing Hermitian metrics on Ei, Fi (so
that σ∗ is defined), a product of symbol classes is given by

[E0, E1, σ][F0, F1, τ ] =
[
(E0 ⊗ F0)⊕ (E1 ⊗ F1), (E1 ⊗ F0)⊕ (E0 ⊗ F1), θ

]
where

θ =

(
σ ⊗ 1 −1⊗ τ ∗
1⊗ τ σ∗ ⊗ 1

)
.

That this is equivalent to the product induced from tensor products of vector
bundles requires some explanation.
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The method given by Atiyah [1] is indirect. For each pair Y ⊂ X of compact
Hausdorff spaces, Atiyah defines the set L(X, Y ) which consists of finite-
length chain complexes of vector bundles on X which are exact on Y , modulo
the equivalence relation given by addition of elementary sequences: those of
the form · · · → 0 → E0 → E0 → 0 → · · · where the map E0 → E0 is
the identity. He then shows that there is a unique natural transformation of
functors χX,Y : L(X, Y )→ K(X, Y ) satisfying

χX,∅(E := 0→ En → · · · → E0 → 0) =
n∑
i=0

(−1)i[Ei].

This natural transformation is called the Euler characteristic. Given a com-
plex E in L(X, Y ),

E := 0→ En
fn−→ En−1

fn−1−−→ · · · f1−→ E0 → 0

it is always possible to find a complex of length two in the same equivalence
class. It can be constructed by putting Hermitian metrics on the bundles Ei
and then considering the complex

0→ F1
f−→ F0 → 0

where
F0 =

⊕
E2i F1 =

⊕
E2i−1

and
f =

∑
f2i−1 +

∑
f ∗2i.

This is analogous to the trick used for example when one wants to think of
the de Rham differential d as an odd operator on a Z/2-graded vector space.
Then one applies the “difference bundle contruction” (as seen in class) to
obtain the class χ(E) in K(X, Y ).

The key fact is that χ intertwines tensor products of chain complexes with
the product in K(X, Y ) (induced from tensor products of vector bundles).
This is clear for Y = ∅ from the formula for the natural transformation χ. It
is less clear for general Y , but follows from the naturality of χ together with
the properties of products in L(X, Y ) and K(X, Y ). In the case of symbols
we take X = DGM the (closed) disc “bundle” in T ∗GM (so the discs will
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vary in dimension if the group action fails to be locally free) and Y = SGM
the sphere bundle in T ∗GM . Even though the “fibres” now vary dimension,
the construction works the same because it is performed fibre-wise. It would
be nice to have a more direct argument that the formula for the product of
symbol classes above is correct, but it is not obvious to me how to do this.

With this we can state the multiplicative property of the index.

Theorem 3. Let X be a compact G-space and Y a compact G × H-space.
External tensor product induces a multiplication

KG(T ∗GX)⊗KG×H(T ∗HY )→ KG×H(T ∗G×H(X × Y )).

By the discussion above, this can be computed on symbol classes using the
formula for θ given above. Moreover

indX×YG×H(ab) = indXG (a) · indYG×H(b).

The proof involves a short calculation using transversally elliptic operators
representing the classes a, b, together with the concrete formula for products
of symbol classes discussed above. A remark that Atiyah makes following
the proof helps to explain why one needs for example b ∈ KG×H(T ∗HY ). If
B is a transversally elliptic operator with symbol b, then b ∈ KG×H(T ∗HY )
implies that

ind(B) =
∑
α,β

Cαβχαφβ

where χα, φβ are the characters of the irreducible representations of G, H
respectively, and the Cαβ are coefficients. Since b ∈ KG×H(T ∗HY ) and not
KG×H(T ∗G×HY ), for each β only finitely many of the Cαβ are nonzero. This
ensures that ind(B) can be multiplied by a distribution on G (in general this
is not possible).

The multiplicative property turns out to be extremely useful. For example,
below we’ll see examples where a useful map between two different K-groups
can be constructed by setting one of the arguments in the product equal to
a fixed element. This includes the induction and restriction maps. Another
application is to fibre bundles which are not products. One can always write
a vector bundle E as an associated bundle P ×O(n) Rn, and it is sometimes
possible to deduce information by applying the multiplicative property to
P × Rn.
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2.2 Excision and wrong-way maps

The next result Atiyah discusses is excision, which allows the index map to
be extended to non-compact spaces.

Theorem 4. Let j : U → X be an open G-equivariant embedding, where X
is compact. Then there is an induced map

j∗ : KG(T ∗GU)→ KG(T ∗GX).

Moreover the composition ind ◦ j∗ is independent of the choice of embedding.

As in the elliptic case, there is a “wrong-way” map j! associated to any G-
equivariant embedding j : X → Y . Let π : N → X be the normal bundle of
X in Y , then TN ' π∗(N ⊕ N) is a complex vector bundle over TX so we
have the symbol on N defining the Bott element

Cliff : (Tπ)∗ ∧ev (TN1,0)→ (Tπ)∗ ∧odd (TN1,0).

(By “symbol on N” we mean a map of bundles over TN ' T ∗N .) Let
a ∈ KG(T ∗GX). We can represent a by a transversally elliptic symbol σ ∈
Hom(π∗TXE0, π

∗
TXE1) where E0, E1 are vector bundles overX. Pull σ, π∗TXE0,

π∗TXE1 back by Tπ to obtain a symbol (Tπ)∗σ on N . We can then mul-
tiply this with the symbol Cliff (as described earlier). This gives a sym-
bol Cliff · (Tπ)∗σ on N which is transversally elliptic and hence defines a
class in T ∗GN . Composing with the map j∗ induced by the open inclusion
T ∗GN → T ∗GY we get an element j!(a) ∈ KG(T ∗GY ).

Similar to the elliptic case, we have the following theorem.

Theorem 5. Let X be compact and let j : X → Y be a G-equivariant
embedding. Then indY ◦ j! = indX .

We’ll describe some ideas from the proof since it is an example of the “as-
sociated bundle trick” mentioned above. First by excision and the tubular
neighbourhood theorem, it is enough to consider Y = N where N is a G-
equivariant vector bundle overX. Now writeN = P×O(n)Rn as an associated
bundle of a G-equivariant principal O(n)-bundle, with G acting trivially on
Rn. Since the O(n) action on P is free, the pullback maps

KG(TGX)→ KG×O(n)(TG×O(n)P )

KG(TGN)→ KG×O(n)(TG×O(n)(P × Rn))
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are isomorphisms (again we’re using the identification of O(n)-basic covectors
on P with covectors on P/O(n) = X). We have a multiplication

KG×O(n)(TG×O(n)P )⊗KG×O(n)(TRn)→ KG×O(n)(TG×O(n)(P × Rn)).

Under the isomorphisms above this becomes

KG(TGX)⊗KG×O(n)(TRn)→ KG(TGN).

Taking the second argument in this product to be the Bott class inKG×O(n)(TRn)
realizes the Bott isomorphism j! as a special case of the product! The result
then follows quickly from the multiplicative property of the index (using that
the index of the Bott class is 1). (In fact the multiplicative property yields a
slightly more general equation between distributions on G × O(n), and the
desired result comes from taking the O(n)-invariant parts of the equation.)

2.3 Localization

Let Xg = {x ∈ X|gx = x}. Then we have the following result:

Theorem 6. (Localization in equivariant K-theory) Let σ ∈ KG(TGX) be a
transversally elliptic symbol. Then

supp(ind(σ)) ⊂
⋃
Xg 6=∅

g.

This is analogous to localization in equivariant cohomology (and is another
instance of the analogy between integration for de Rham cohomology on the
one hand, and the index map for K-theory on the other—and interestingly,
more or less the same ideas can be used to prove both cases, c.f. Atiyah and
Bott’s paper on equivariant cohomology).

2.4 Induction and restriction

Another topic that Atiyah discusses is change of group. The first possibility
is the inclusion of a subgroup i : H → G. We have a product map

KH(THX)⊗KG×H(TGG)→ KG×H(TG×H(G×X))
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where G×H acts on G via the action (g, h) : g′ 7→ gg′h−1. Since the diagonal
action of H on G×X is free, this becomes

KH(THX)⊗KG×H(TGG)→ KG(TG(G×H X)).

Restricting the second argument to the trivial complex line bundle on TGG
(equivalently: the symbol of the zero map TG × C → TG × {0}, which is
G-transversally elliptic), yields an “induction map”

i∗ : KH(THX)→ KG(TG(G×H X)),

which is in fact an isomorphism. Equivalently, the map i∗ comes from pulling
back an H-tranversally elliptic symbol σ to G × X to obtain a G × H-
transversally elliptic symbol. Since the diagonal H action is free, the symbol
descends to the quotient G ×H X and the result is i∗σ. We use the same
symbol i∗ to denote the induction map D′(H)H → D′(G)G (dual to the
restriction map i∗ on smooth functions C∞(G)G → C∞(H)H).

Remark. The map i∗ is not pushforward of distributions under inclusion,
which would be dual to the map C∞(G) → C∞(H). The map C∞(G)G →
C∞(H)H extends to a map C∞(G) → C∞(H), by precomposing with the
averaging map (over conjugacy classes). This implies that i∗ is the composi-
tion of pushforward from H to G, followed by averaging over G-orbits. (One
can always average a distribution over G-orbits; it is just the dual map to
averaging a smooth function over G-orbits.)

In this setting, Atiyah proves

i∗ ◦ indXH = indG×HXG ◦ i∗.

The second possibility Atiyah discusses is restriction to a maximal torus
T ⊂ G. The strategy is again to realize a map KG(TGX) → KT (TTX)
as a special case of the product construction. If X is a G-manifold then
G×T X ' G/T ×X as G-spaces. We have a product map

KG(TGX)⊗KG(T (G/T ))→ KG(TG(G/T ×X)) = KG(TG(G×T X)).

To get a map that preserves the index we therefore need a symbol on G/T
with index 1 ∈ R(G) (the representation ring of G). Now G/T is a complex
manifold and in fact the ∂̄-complex (∧T 0,1(G/T )) is known to have index
1 ∈ R(G) (corresponding to the one dimensional space of holomorphic func-
tions on the compact manifold G/T , i.e. constants). Fixing this symbol

12



as the second argument we obtain an index-preserving map KG(TGX) →
KG(TG(G×T X)). If we then compose this with the inverse of the induction
isomorphism corresponding to i : T → G we obtain the restriction map

r : KG(TGX)→ KT (TTX).

And by the result on i∗ described above we have

indG = i∗ ◦ indT ◦ r,

which shows that the index of any G-transversally elliptic symbol is captured
(in theory) by an appropriate “restriction” of it to a T -transversally elliptic
symbol.

3 Example: circle action on a vector space

Above we summarized the first four (of ten!) of Atiyah’s 1971 lectures. In
lectures 5 and 6 he goes on to study in detail the case X = V a vector space
and G = S1 the circle group. We will simply state part of a result which is
the culmination of lectures 5 and 6.

Let V be a 2n-dimensional real vector space, with a linear H = S1 action
fixing only the origin. Let A denote the vector field on V generated by the
S1 action (say A is the image of i ∈ Ri = Lie(S1)), so A vanishes only at the
origin. Choose a complex structure on V so that the weights m1, ...,mn > 0.
Let V0 denote the tangent space to V at 0 (isomorphic to V itself of course).

Since V0 ' V is a complex vector space, we have a canonical generator for
KH(V0) namely the Bott class, which (to be consistent with Atiyah’s nota-
tion) we denote ∂̄ = j!(1) = [λV ] (here j : {0} → V is the inclusion of the
origin). (Explicitly this is the symbol λV = Cliff : ∧evV 1,0 → ∧oddV 1,0, where
these are though of as vector bundles over V .) We now use the vector field
A to define two classes in KH(THV ).

First extend the symbol λV trivially to TV (pull the bundles and the bundle
map λV back by the map TV → V0 “translation to the origin”). So λV
becomes a bundle map π∗TV ∧ev V 1,0 → π∗TV ∧odd V 1,0 which is invertible away
from the zero section V ⊂ TV . The problem is that the characteristic set
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V does not intersect THV in a compact set, so λV is not H-transversally
elliptic. To fix this we put

λ±V (x, ξ) := λV (x, ξ ± A(x)).

These maps have characteristic set equal to the graph of A (−A respectively),
which intersects THV in a single point: (0, 0). Thus [λ±V ] =: ∂̄± ∈ KH(THV )
is a transversally elliptic symbol.

A central result of lectures 5 and 6 is the computation of the index of these
classes. We introduce the following notation. Let f(z) be a meromorphic
function with poles only on the unit circle S1 ⊂ C. Then f has Taylor
expansions around 0 and around ∞, i.e. f(z) = Σanz

n for |z| < 1 and
f(z) = Σbnz

−n for |z| > 1. We denote these two Taylor series by f+ and f−

respectively. Each defines a distribution on S1, defined either by integrat-
ing against the series termwise or equivalently one can deform S1 to either
a slightly smaller (for f+) or slightly larger (for f−) circle of radius 1 ± ε,
integrate against f and then let ε go to zero. As one sees from the descrip-
tion in terms of contours, the difference between these two distributions is a
distribution which involves taking residues at the poles of f .

Theorem 7. Let R(H) = Z[t, t−1] be the representation ring of H = S1. For
the classes ∂̄± defined above we have

indH(∂̄±) =

[∏
i

1

1− t−mi

]±
.

In the lectures, Atiyah in fact obtains a complete description of the image
of the index map for the case of S1 acting on a vector space V . The image
forms an R(H)-submodule of the distributions on S1. There is a torsion part
which is generated by the image of the difference ∂̄+ − ∂̄−, and there is a
free part which is generated by the image of ∂̄+ (or equivalently ∂̄−; this is a
choice of splitting).

In the later lectures Atiyah goes on to study in detail the more general case
of a torus acting on a vector space. As he points out this gives a pretty good
handle on the index map, since the general case can in some sense be reduced
to this case by the pushforward j! and induction maps.
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4 Brief remarks on a cohomological formula

In the 1971 lecture notes, Atiyah obtains a cohomological formula for the
index in a special case. About 25 years passed before a fully general cohomo-
logical formula was published by Berline and Vergne [3]. For completeness
we’ll quote their result, though we will not explain all the various parts which
appear. There are some complications in the transversally elliptic case. Given
a class a ∈ KG(TGM) one must pick a sufficiently “nice” representative sym-
bol σ, called G-transversally good. One needs conditions on the growth of σ
along the fibres of TM , including directional information involving a cone of
directions around TGM inside TM . The terms of the formula require some
modification to terms which are more analytically manageable. Also the for-
mula only expresses the germs of the index around points g ∈ G—it is then
a theorem that there is a unique distribution on G corresponding to these
germs.

Theorem 8. Let σ be a G-transversally good symbol on M . Let g ∈ G and
Y ∈ gg (the infinitesimal stabilizer of g for the conjugation action) sufficiently
close to zero. The germ of the analytic index at g ∈ G is given by

ind(σ)(geY ) = (2πi)−dimM
g

∫
T ∗Mg

chg(Aθ
σ)(Y )J(M g)(Y )−1Dg(ν)(Y )−1.

There is a one-one correspondence between distributions on a slice U =
{geY : Y ∈ gg close to zero} for the G action on itself by conjugation, and G-
invariant distributions on G·U (G acts by conjugation). This correspondence
is understood implicitly in the formula. Referring to the formula: Dg(ν)(Y ) is
an equivariant class associated to the normal bundle ν of M g in M similar to
the Atiyah-Segal-Singer formula, J is roughly the inverse of the equivariant Â
class, Aθ

σ is a “superconnection” (first-order odd linear differential operator on
a graded vector bundle over TM g with Leibniz rule) encoding the information
in the symbol σ and modified by the canonical 1-form θ on T ∗M g = T ∗(M g).

5 Quantization commutes with reduction

In this last section we’ll summarize Paradan’s paper [4], which gives a proof of
the “quantization commutes with reduction” theorem. The proof is an appli-
cation of the index theory for transversally elliptic operators discussed above.
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Let (M,ω) be a compact symplectic manifold with moment map φ : M → g∗.
Identify g = g∗ using a G-invariant inner product. Choose a G-invariant
compatible almost complex structure J . For any G-equivariant hermitian
vector bundle E → M equipped with a compatible connection, let DE
denote the corresponding Dirac-Dolbeault operator Γ(∧evT 0,1M ⊗ E) →
Γ(∧oddT 0,1M ⊗ E). The Riemann-Roch character is an R(G)-module ho-
momorphism RR(M, ·) : KG(M)→ R(G) defined by

RR(M,E) = indG(DE).

The Spinc quantization of M is obtained by applying this map to a prequan-
tum line bundle L→ M . Since the symbol of the Dirac-Dolbeault operator
is the Bott class (tensored with E), we can equivalently describe the map
RR as the composition

KG(M)
λM−−→ KG(TM)

indG−−→ R(G).

(Here λM is the Bott isomorphism.)

The basic strategy is to construct a homotopy of λM(E) =: λE in the space of
transversally elliptic symbols (even though λM(E) is initially elliptic), using
the fact that this preserves the index. Let φ̂(m) denote the vector in TmM
which is the image of φ(m) ∈ g under the map g → TmM (in other words,
φ̂ is the vector field generated by the Hamiltonian 1

2
||φ||2). For s ∈ [0, 1] we

define symbols
λE(s)(x, ξ) = λE(x, ξ − sφ̂(x)).

Put λE1 = λE(1). In particular this shows that [λE] = [λE1 ] ∈ KG(TM).
Since the characteristic set char(λE) (i.e. the subset of TM where λE is not
invertible) of λE was the zero section M ⊂ TM , the characteristic set of λE1
is the graph Γφ of φ̂. Notice that

Γφ ∩ TGM = {m ∈M : φ̂(m) = 0} = Crit(||φ||2) =: C.

Now the critical values of ||φ||2 can be indexed by a finite discrete subset B ⊂
t+ containing 0. Let Cβ for β ∈ B be the union of connected components of
C corresponding to β. For each Cβ choose a G-invariant open neighbourhood
Uβ ⊃ Cβ such that Uα ∩ Uβ = ∅ for α 6= β. Since Γφ ∩ Uβ ∩ TGM = Cβ is
compact, the restriction λEβ := λE1 |Uβ defines a G-transversally elliptic symbol

in KG(TGU
β). Let iβ : Uβ →M be the inclusion.
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Theorem 9. Using the notation introduced above, we have the following
equality in KG(TGM):

λE =
∑
β∈B

iβ∗λ
E
β .

Proof. (Sketch) We would like to apply excision, but for this we need a
transversally elliptic symbol in the same class (of KG(TGM)) as λE1 but hav-
ing characteristic set contained in TM |U where U is the union of the Uβ (at
the moment we have only that char(λE1 ) ∩ TGM ⊂ U). The problem is that
char(λE1 ) ∩ U is not a compact set, and so we want to deform the symbol
so that it becomes compact. Let χβ : M → [0, 1] be a smooth bump func-
tion supported in Uβ and non-zero on Cβ, and put χ = Σχβ. Consider the
homotopy

λEt (x, ξ) = λE(x, (t+ (1− t)χ(x))ξ − φ̂(x)).

(Clearly λE1 here agrees with our earlier definition.) One can check that this
is G-transversally elliptic for each t, and hence λE1 defines the same class as
λE0 in KG(TGM). Consider

λE0 (x, ξ) = λE(x, χ(x)ξ − φ̂(x)).

This has characteristic set {(x, ξ) : χ(x)ξ = φ̂(x)}. If x /∈ U then χ(x) =
0 ⇒ φ̂(x) = 0 which implies that x ∈ C ⊂ U , a contradiction. Hence
char(λE0 ) ⊂ TM |U , so we can now apply excision and homotopy invariance:

λE = λE1 = λE0 =
∑
β

iβ∗ (λ
E
0 |Uβ) ∈ KG(TGM).

A similar homotopy shows λE0 |Uβ = λEβ in KG(TGU
β), and the result follows.

This theorem gives the decomposition

RR(M,E) =
∑
β

indUβ(λEβ ) =:
∑
β

RRβ(M,E).

Information about RR(M,E) can be obtained from studying the pieces
RRβ(M,E). By considering local normal forms near φ−1(0) Paradan proves

Theorem 10. Suppose 0 is a regular value of φ, and let L be a prequantum
line bundle. Let Mred = φ−1(0)/G. Then

RR0(M,L)G = RR(Mred, Lred).
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This is at least plausible given that RR0 is localized in a small neighbour-
hood of φ−1(0). (Paradan has more general results covering vector bundles
E satisfying an appropriate condition, and also results covering the singular
case.)

Given this theorem, in order to prove [Q,R] = 0 it remains to show that
RRβ(M,L)G = 0 for each β ∈ B − {0}. If we restrict RRβ(M,L) to the
maximal torus T we get a sum of characters of T (the weight decomposi-
tion) which we can think of as a discrete measure on t∗ with mass at each
lattice point corresponding to the multiplicity. This “quantum multiplicity
function” determines the representation. It turns out that the contribution
RRβ to the quantum multiplicity function RR(M,L) is supported outside
the ball of radius ||β|| in t∗ and so the desired result follows.

How this comes about is interesting. One first reduces to the case where β ∈ g
is central. This is done using the general induction/restriction properties of
the index discussed earlier (but still requires some work since those maps are
still quite abstract). There are actually two choices. One could consider M
as a Hamiltonian T -space (with moment map φT = prt ◦ φ), and Paradan
proves an induction formula:

Theorem 11. Let W be the Weyl group and HolGT the holomorphic induction
map R(T )→ R(G). Let RRT

β′(M,E) denote the contribution to RRT (M,E)
corresponding to the critical point β′ of the T -moment map φT . Then we
have

RRG
β (M,E) =

∑
β′∈W ·β

HolGT (RRT
β′(M,E)).

(See the paper for further information, e.g. on the holomorphic induction
map.) Alternatively one could pass to the symplectic cross-section Yβ which
is a Hamiltonian Gβ-space (and β is central in Gβ by definition). Paradan
also proves an induction formula in this case:

Theorem 12. Let RR
Gβ
β (Yβ, E) denote the contribution to RRGβ(Yβ, E) cor-

responding to the critical point β of the restricted moment map φ|Yβ for Yβ.
Then we have

RRG
β (M,E) = HolGGβ(RR

Gβ
β (Yβ, E)).

Either formula allows one to reduce to the situation in which β is central.
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The case where β is central is handled by making heavy use of the properties
discussed in the previous sections (especially the multiplicative property), as
well as Atiyah’s result for the case of S1 acting on a vector space. What
is perhaps remarkable is that so little is used beyond the general abstract
properties of the index map and the single explicit calculation for S1. The
key result is:

Theorem 13. Let β ∈ g be central. We have the following equality in the
completed character ring R̂(G)

RRβ(M,E) = (−1)rν
∑
k∈N

RRβ(Mβ, E ⊗ det ν+,β ⊗ Sk(ν ⊗ C)+,β).

The notation requires some explanation: Sk denotes the kth symmetric power,
ν denotes the normal bundle to Mβ in M and rν is its rank. Let H be the
torus generated by β. An H-equivariant complex vector bundle F → Mβ

splits into a sum of H-weight bundles with weights α1, ..., αn. The vector
bundle F+,β is the sum of those weight bundles having 〈αi, β〉 > 0; in other
words it is the β-polarized part of the vector bundle F . Note also that since
ν is already a complex vector bundle, ν ⊗ C ' ν ⊕ ν̄ which implies that
(ν ⊗ C)+,β has the same dimension as ν (but the weights are polarized).

Similar to above, RRβ(Mβ, F ) denotes the contribution to RR(Mβ, F ) cor-
responding to β for the restricted moment map φ|Mβ . To keep notation
simple we take Mβ to denote the components of Mβ which intersect φ−1(β)
non-trivially (since these are the only parts that contribute to the formula).
The image of this restricted moment map is contained in the affine subspace
through β which is orthogonal to β in g = g∗ (β is central). Putting E = L
a prequantum line bundle, it follows from the Kostant formula that H has
weight β on L|Mβ . The result now follows fairly quickly from the theorem.
Since the weight of H on L is β and since all the other vector bundles appear-
ing in the formula are β-polarized, all the H-weights α on the right hand side
satisfy 〈α, β〉 ≥ ||β||2 (i.e. they lie in the half-space not containing the origin
which is determined by the affine subspace 〈α, β〉 = ||β||2 through β in g).
One can show using the fact that H is central that this property is preserved
on applying the index map (this is proved for example in the appendix of
Paradan’s paper), which proves the desired result.
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Roughly, the proof of the theorem itself involves two clever uses of the
multiplicative property. One works on the small neighbourhood Uβ where
RRβ(M,E) is localized. The local normal form is the normal bundle ν →Mβ

(perhaps restricted to a small neighbourhood of φ−1(β) ∩Mβ in Mβ). The
multiplicative property is used on the vector bundle ν (using the “associated
bundle trick” described earlier) to break things up into a contribution from
the base Mβ and the typical fibre. One is lead to consider the action of a
torus on a typical fibre, which is a vector space. The multiplicative property
is used again in a very clever way to extract the desired information from the
one explicit computation for S1 done by Atiyah! This is only a rough out-
line of the story—there are many further important details spanning several
pages. Hopefully it gives something of the flavour of Paradan’s approach to
the [Q,R] = 0 theorem.
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